International Journal of Engineering Sciences & Research Technology

Technology (A Peer Reviewed Online Journal) Impact Factor: 5.164

Chief Editor Dr. J.B. Helonde

Executive Editor Mr. Somil Mayur Shah

[Karthika * *et al.*, 8(3): March, 2019] ICTM Value: 3.00

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

CONTRA wa-CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES

Karthika A.P^{*1} & Balamani N²

*Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, Tamil Nadu, India

DOI: Will get Assigned by IJESRT Team

ABSTRACT

In this paper we introduce and investigate the notations of contra $\psi\alpha$ -continuous functions and almost contra $\psi\alpha$ continuous functions in topological spaces. We discuss the relationsbetween these contra continuities and other related contra continuities.

KEYWORDS: Contra continuous functions, almost contra continuous functions, $\psi \alpha$ -continuous functions, $\psi \alpha$ -co

1. INTRODUCTION

Singal M.Kand Singal A.R [12] introduced almost continuous functions in topological spaces.Levine [9] introduced the idea of continuous functions in topological spaces.Dontchev[3] introduced the notation of contra continuous functions in topological spaces. Jafari and Noiri [5] introduced and studied the new form of functions called contra α -continuous functions in topological spaces. Shakila and Balamani [11]introduced the concept of almost contra continuous functions in topological spaces. Recently Karthika and Balamani [7] introduced totally $\psi\alpha$ -continuous functions and $\psi\alpha$ totally continuous functions in topological spaces.

The purpose of this paper is to introduce and study a new type of contra continuous functions namely contra $\psi\alpha$ continuous functions and almost contra $\psi\alpha$ -continuous functions in topological spaces. Also we obtain the
interrelations between these continuous functions.

2. PRELIMINARIES

Definition 2.1 Let (X,τ) be a topological space. A Subset A of a topological space (X,τ) is called

- 1) **Regular open[13]** if A = int(cl(A)).
- 2) **Semi-open [8]** if $A \subseteq cl(int(A))$.
- 3) **\alpha-open [10]** if $A \subseteq int(cl(int(A)))$.
- 4) generalized closed [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 5) Semi generalized closed [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ) .
- 6) ψ -closed [14] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).
- 7) $\psi \alpha$ -closed [11] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .
- 8) $\psi \alpha$ -clopen [11] if it is both $\psi \alpha$ -open and $\psi \alpha$ -closed in (X, τ) .

Results 2.2

- Every **closed** (open) subset in (X,τ) is $\psi \alpha$ -closed ($\psi \alpha$ -open).
- Every **clopen** subset in (X,τ) is $\psi\alpha$ -clopen.
- Every **regular open**(regular closed) subset in (X,τ) is **open**(closed).
- Every α -open subset in (X,τ) is $\psi \alpha$ -open.

Definition 2.3 Let (X,τ) and (Y,σ) be two topological spaces. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called 1) **Almost continuous [12]** if f⁻¹(V) is closed in (X,τ) for every regular closed set V of (Y,σ) .

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology
[193]

ISSN: 2277-9655

CODEN: IJESS7

Impact Factor: 5.164

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

[Karthika * *et al.*, 8(3): March, 2019] ICTM Value: 3.00

- 2) **Continuous [9]** if $f^{-1}(V)$ is closed in (X,τ) for every closed set V of (Y,σ) .
- 3) **Completely continuous [1]** if $f^{-1}(V)$ is regular open in (X,τ) for every open set V of (Y,σ) .
- 4) Totally Continuous [6] if $f^{-1}(V)$ is clopen in (X,τ) for every open set V of (Y,σ) .
- 5) Almost contra continuous [4] if $f^{-1}(V)$ is closed in (X,τ) for every regular open set V of (Y,σ) .
- 6) **Contra continuous [3]** if $f^{-1}(V)$ is closed in (X,τ) for every open set V of (Y,σ) .
- 7) Contra α -continuous [5] if $f^{-1}(V)$ is α -closed in (X, τ) for every open set V of (Y, σ) .
- 8) $\psi \alpha$ -Continuous[11] if $f^{-1}(V)$ is $\psi \alpha$ -closed in (X, τ) for every closed set V of (Y, σ) .
- 9) Totally ψa -continuous [7] if f⁻¹(V) is ψa -clopen in (X, τ) for every open set V of (Y, σ).
- 10) $\psi \alpha$ -totally continuous [7] if f⁻¹(V) is clopen in (X, τ) for every $\psi \alpha$ -open set V of (Y, σ).

3. CONTRA *ya*-CONTINUOUS FUNCTIONS

Definition 3.1A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called **contra \psi \alpha-continuous** if f⁻¹(V) is $\psi \alpha$ -open in (X,τ) for every closed set V of (Y,σ) .

Example 3.2 Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},X\}$ and $\sigma = \{\phi,\{a,b\},Y\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function defined by f(a) = c, f(b) = b, f(c) = a. Then f is contra $\psi\alpha$ -continuous.

Theorem 3.3A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra $\psi\alpha$ -continuous if and only if $f^{-1}(V)$ is $\psi\alpha$ -closed in (X,τ) for every open set V of (Y,σ) .

Proof: (Necessity) Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be contra $\psi\alpha$ -continuous and V be any open set in (Y,σ) . Then Y -V is closed in (Y,σ) . Since f is contra $\psi\alpha$ -continuous, $f^{-1}(Y - V) = X - f^{-1}(V)$ is $\psi\alpha$ -open in (X,τ) which implies that $f^{-1}(V)$ is $\psi\alpha$ -closed in (X,τ) .

(Sufficiency): Let U be any closed set in (Y,σ) . Then Y-U is open in (Y,σ) . By assumption, $f^{-1}(Y - U) = X - f^{-1}(U)$ is $\psi\alpha$ -closed in (X,τ) which implies that $f^{-1}(U)$ is $\psi\alpha$ -open in (X,τ) . Hence f is contra $\psi\alpha$ -continuous.

Proposition 3.4 Every contra continuous function is a contra $\psi\alpha$ -continuous function but not conversely.

Proof: Let V be any open set in (Y,σ) . Since f is contra continuous, $f^{-1}(V)$ is closed in (X,τ) . By result 2.2, $f^{-1}(V)$ is $\psi\alpha$ -closed in (X,τ) . Hence f is contra $\psi\alpha$ -continuous.

Example 3.5 Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},\{a,b\},X\}$ and $\sigma = \{\phi,\{a\},Y\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function defined by f(a)=b, f(b)=a, f(c)=c. Then f is contra $\psi\alpha$ -continuous but not contra continuous, since for the open set $\{a\}$ in (Y,σ) , $f^{-1}(\{a\}) = \{b\}$ is $\psi\alpha$ -closed but not closed in (X,τ) .

Proposition 3.6 Every contra α -continuous functionis a contra $\psi \alpha$ -continuous function but not conversely.

Proof: Let V be any closed set in (Y,σ) . Since f is contra α -continuous, f⁻¹(V) is α -open in (X,τ) . By result 2.2, f⁻¹(V) is $\psi\alpha$ -open in (X,τ) . Hence f is contra $\psi\alpha$ -continuous.

Example 3.7Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\}, \{b\}, \{a,b\},X\}$ and $\sigma = \{\phi,\{a\},Y\}$. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function defined by f(a) = b, f(b) = a, f(c) = c. Then f is contra $\psi\alpha$ -continuous but not contra α -continuous, since for the closed set $\{b,c\}$ in $(Y,\sigma), f^{-1}(\{b,c\}) = \{a,c\}$ is $\psi\alpha$ -open but not α -open in (X,τ) .

Proposition 3.8 Every totally continuous function is a contra $\psi\alpha$ -continuous function but not conversely. **Proof:** Let V be any open set in (Y, σ). Since f is totally continuous, f⁻¹(V) is clopen in (X, τ). By result 2.2, f⁻¹(V) is $\psi\alpha$ -clopenin (X, τ) which implies that f⁻¹(V) is $\psi\alpha$ -closed in (X, τ). Hence f is contra $\psi\alpha$ -continuous.

Example 3.9 Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},\{a,b\},X\}$ and $\sigma = \{\phi,\{a\},Y\}$. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function defined f(a) = b, f(b) = a, f(c) = c. Then f is contra $\psi\alpha$ -continuous but not totally continuous, since for the open set $\{a\}$ in (Y,σ) , f⁻¹ $(\{a\}) = \{b\}$ is $\psi\alpha$ - closed but not clopen in (X,τ) .

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[194]

[Karthika * *et al.*, 8(3): March, 2019] ICTM Value: 3.00

Proposition 3.10Every totally $\psi\alpha$ -continuous function is a contra $\psi\alpha$ -continuous function but not conversely.

Proof: Let V be any closed set in (Y,σ) . Since f is totally $\psi\alpha$ -continuous, $f^{-1}(V)$ is $\psi\alpha$ -clopen in (X,τ) which implies that $f^{-1}(V)$ is $\psi\alpha$ -open in (X,τ) . Hence f is contra $\psi\alpha$ -continuous.

Example 3.11Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},X\}$ and $\sigma = \{\phi,\{a,b\},Y\}$. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function defined by f(a) = c, f(b) = b, f(c) = a. Then f is contra $\psi\alpha$ -continuous but not totally $\psi\alpha$ -continuous, since for the closed set $\{c\}$ in (Y,σ) , $f^{-1}(\{c\}) = \{a\}$ is $\psi\alpha$ -open but not $\psi\alpha$ -closed in (X,τ) .

Proposition 3.12Every $\psi \alpha$ - totally continuous function is a contra $\psi \alpha$ -continuous function but not conversely.

Proof: Let V be any open set in (Y,σ) .By result 2.2, V is $\psi\alpha$ -open in (Y,σ) . Since f is $\psi\alpha$ -totally continuous, f⁻¹(V) is clopen in (X,τ) . By result 2.2, f⁻¹(V) is $\psi\alpha$ -clopen in (X,τ) which implies that f⁻¹(V) is $\psi\alpha$ -closed in (X,τ) . Hence f is contra $\psi\alpha$ -continuous.

Example 3.13Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},\{b\},\{a,b\},X\}$ and $\sigma = \{\phi,\{a,b\},Y\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function defined f(a) = a, f(b) = c, f(c) = b. Then f is contra $\psi\alpha$ -continuous but not $\psi\alpha$ -totally continuous, since for the $\psi\alpha$ -open set $\{a,b\}$ in (Y,σ) , $f^{-1}(\{a,b\}) = \{a,c\}$ is not clopen in (X,τ) .

Remark 3.14 Contra $\psi\alpha$ -continuous function is independent from $\psi\alpha$ -continuous function as seen from the following examples.

Example 3.15Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},X\}$ and $\sigma = \{\phi,\{a,b\},Y\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function defined by f(a) = c, f(b) = b, f(c) = a. Then f is contra $\psi\alpha$ -continuous but not $\psi\alpha$ -continuous, since for the closed set $\{c\}$ in (Y,σ) , $f^{-1}(\{c\}) = \{a\}$ is $\psi\alpha$ -open but not $\psi\alpha$ -closed in (X,τ) .

Example 3.16 Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},\{a,b\},X\}$ and $\sigma = \{\phi,\{a,b\},Y\}$. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be the identity function. Then f is $\psi\alpha$ -continuous but not contra $\psi\alpha$ -continuous, since for the closed set {c} in (Y,σ) , f ${}^{1}(\{c\}) = \{c\}$ is $\psi\alpha$ -closed but not $\psi\alpha$ -open in (X,τ) .

Proposition 3.17 If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a contra $\psi\alpha$ -continuous function and $g:(Y,\sigma) \rightarrow (Z, \eta)$ is a continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a contra $\psi\alpha$ -continuous function.

Proof: Let V be any closed set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y,σ) . Since f is contra $\psi \alpha$ -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\psi \alpha$ -open in (X,τ) . Hence g o f is a contra $\psi \alpha$ -continuous function.

Proposition 3.18 If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a totally $\psi \alpha$ -continuous function and $g:(Y,\sigma) \rightarrow (Z, \eta)$ is a continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a contra $\psi \alpha$ -continuous function.

Proof: Let V be any closed set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y,σ) . Since f is totally $\psi\alpha$ -continuous, (g o f)⁻¹(V) = f⁻¹(g⁻¹(V)) is $\psi\alpha$ -clopen in (X,τ) which implies that (g o f)⁻¹(V) is $\psi\alpha$ -open in (X,τ) . Hence g o f is a contra $\psi\alpha$ -continuous function.

Proposition 3.19If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a totally continuous function and $g:(Y,\sigma) \rightarrow (Z,\eta)$ is a continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a contra $\psi\alpha$ -continuous function.

Proof: Let V be any closed set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y,σ) . Since f is totally continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in (X,τ) . By result 2.2, $(g \circ f)^{-1}(V)$ is $\psi\alpha$ -clopen in (X,τ) which implies that $(g \circ f)^{-1}(V)$ is $\psi\alpha$ -open in (X,τ) . Hence g o f is contra $\psi\alpha$ -continuous.

Proposition 3.20If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a $\psi\alpha$ -totally continuous function and $g:(Y,\sigma) \rightarrow (Z, \eta)$ is a continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a contra $\psi\alpha$ -continuous function.

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[195]

 ISSN: 2277-9655

 [Karthika * et al., 8(3): March, 2019]
 Impact Factor: 5.164

 ICTM Value: 3.00
 CODEN: IJESS7

Proof: Let V be any closed set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y, σ) . By result 2.2, $g^{-1}(V)$ is $\psi \alpha$ -closed in (Y, σ) . Since f is $\psi \alpha$ -totally continuous, (g o f)⁻¹(V) = f^{-1}(g^{-1}(V)) is clopen in (X, τ) By result 2.2, (g o f)⁻¹(V) is $\psi \alpha$ -clopen in (X, τ) which implies that (g o f)⁻¹(V) is $\psi \alpha$ -open in (X, τ) . Hence g o f is a contra $\psi \alpha$ -continuous function.

Proposition 3.21 If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a contra $\psi\alpha$ -continuous function and $g:(Y,\sigma) \rightarrow (Z,\eta)$ is atotally continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a contra $\psi\alpha$ -continuous function.

Proof: Let V be any closed set in (Z, η) . Since g is totally continuous, $g^{-1}(V)$ is clopen in (Y,σ) which implies that $g^{-1}(V)$ is closed in (Y,σ) . Since f is contra $\psi\alpha$ -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\psi\alpha$ -open in (X,τ) . Hence g o f is a contra $\psi\alpha$ -continuous function.

Proposition 3.22 If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a contra $\psi\alpha$ -continuous function and $g:(Y,\sigma) \rightarrow (Z, \eta)$ is a $\psi\alpha$ - totally continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a contra $\psi\alpha$ -continuous function.

Proof: Let V be any closed set in (Z, η) . By result 2.2 V is $\psi\alpha$ -closed in (Z, η) . Since g is $\psi\alpha$ -totally continuous, $g^{-1}(V)$ is clopen in (Y,σ) which implies that $g^{-1}(V)$ is closed in (Y,σ) . Since f is contra $\psi\alpha$ -continuous, (g o f)⁻¹(V) = f^{-1}(g^{-1}(V)) is $\psi\alpha$ -open in (X,τ) . Hence g o f is a contra $\psi\alpha$ -continuous function.

Proposition 3.23If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a totally $\psi \alpha$ -continuous function and $g:(Y,\sigma) \rightarrow (Z, \eta)$ is a completely continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a contra $\psi \alpha$ -continuous function.

Proof: Let V be any open set in (Z, η) . Since g is completely continuous, $g^{-1}(V)$ is regular open in (Y,σ) . By result 2.2, $g^{-1}(V)$ is open in (Y,σ) . Since f is totally $\psi\alpha$ -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\psi\alpha$ -clopen in (X,τ) which implies that $(g \circ f)^{-1}(V)$ is $\psi\alpha$ -closed in (X,τ) . Hence g o f is a contra $\psi\alpha$ -continuous function.

Proposition 3.24If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a contra continuous function and $g:(Y,\sigma) \rightarrow (Z,\eta)$ is a continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a contra $\psi\alpha$ -continuous function.

Proof: Let V be any open set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is open in (Y,σ) . Since f is contra continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is closed in (X,τ) . By result 2.2, $(g \circ f)^{-1}(V)$ is $\psi\alpha$ -closed in (X,τ) . Hence g o f is a contra $\psi\alpha$ -continuous function.

Remark3.25 The composition of two contra $\psi\alpha$ -continuous functions need not be a contra $\psi\alpha$ -continuous function as seen from the following example.

Example 3.26Let $X=Y = Z = \{a,b,c\}, \tau = \{\phi, \{a\}, \{a,b\},X\}$ and $\sigma = \{\phi,\{a,b\},Y\}, \eta = \{\phi, \{a\}, Z\}$. Let f: (X, τ) \rightarrow (Y, σ) be a function defined by f(a) = c, f(b) = b, f(c) = a and g: (Y, σ) \rightarrow (Z, η)be a function defined by g(a) = c, g(b) = b, g(c) = a. Then the functions f and g are contra $\psi\alpha$ -continuous,but their composition g o f : (X, τ) \rightarrow (Z, η) is not contra $\psi\alpha$ -continuous, since for the closed set $\{b,c\}$ in (Z, η), (g o f)⁻¹ ($\{b,c\}$)= $\{b,c\}$ is not $\psi\alpha$ -open in (X, τ).

4. ALMOST CONTRA ψα-CONTINUOUS FUNCTIONS

Definition 4.1A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called **almost contra \psi\alpha-continuous** if f⁻¹(V) is $\psi\alpha$ -closed in (X,τ) for every regular open set V of (Y,σ) .

Example 4.2 Let X=Y={a,b,c}, $\tau = \{\phi, \{a\}, \{a,b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a,b\}, Y\}$. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be afunction defined by f(a)=c, f(b)=b, f(c)=a. Then f is a almost contra $\psi \alpha$ -continuous function.

Theorem 4.3 A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is almost contra $\psi\alpha$ -continuous if and only if the inverse image of every regular open subset of (Y,σ) is $\psi\alpha$ -closed in (X,τ) .

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[196]

	ISSN: 2277-9655
[Karthika * et al., 8(3): March, 2019]	Impact Factor: 5.164
IC [™] Value: 3.00	CODEN: IJESS7

Proof:(Necessity) Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be almost contra $\psi\alpha$ -continuous. Let V be any regular open set in (Y,σ) . Then Y-V is regular closed in (Y,σ) .Since f is almost contra $\psi\alpha$ -continuous, $f^{-1}(Y - V) = X - f^{-1}(V)$ is $\psi\alpha$ -open in (X,τ) which implies that $f^{-1}(V)$ is $\psi\alpha$ -closed in (X,τ) .

(Sufficiency): Let U be any regular closed set in (Y,σ) . Then Y-U is regular open in (Y,σ) . By assumption, $f^{-1}(Y - U) = X - f^{-1}(U)$ is $\psi\alpha$ -closed in (X,τ) which implies that $f^{-1}(U)$ is $\psi\alpha$ -open in (X,τ) . Hence f is almost contra $\psi\alpha$ -continuous.

Proposition 4.4 Every contra $\psi \alpha$ -continuous function is aalmost contra $\psi \alpha$ - continuous function but not conversely.

Proof: Let V be any regular open set in (Y,σ) . By result 2.2, V is open in (Y,σ) . Since f is contra $\psi\alpha$ -continuous, f⁻¹(V) is $\psi\alpha$ -closed in (X,τ) . Hence f is almost contra $\psi\alpha$ -continuous.

Example 4.5 Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},\{b\},\{a,b\},X\}$ and $\sigma = \{\phi,\{a\},\{b\},\{a,c\},Y\}$. Let f: (X, τ) \rightarrow (Y, σ) be the identity function. Then f is almost contra $\psi\alpha$ -continuous but not contra $\psi\alpha$ -continuous, since for the open set $\{a,b\}$ in(Y, σ), f¹($\{a,b\}$) = $\{a,b\}$ is not $\psi\alpha$ -closed in (X, τ).

Proposition 4.6Every contra continuous function is a almost contra $\psi\alpha$ -continuous function but not conversely.

Proof: Let V be any regular open set in (Y,σ) . By result 2.2, V is open in (Y,σ) . Since f is contra continuous, f⁻¹(V) is closed in (X,τ) . By result 2.2, f⁻¹(V) is $\psi\alpha$ -closed in (X,τ) . Hence f is almost contra $\psi\alpha$ -continuous.

Example 4.7 Let $X=Y=\{a,b,c\}, \tau = \{\phi,\{a\},\{a,b\},X\}$ and $\sigma = \{\phi,\{a\},\{b\},\{a,b\},Y\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function defined by f(a)=c,f(b)=b,f(c)=a. Then f is almost contra $\psi\alpha$ -continuous but not contra continuous, since for the open set $\{b\}$ in $(Y,\sigma), f^{-1}(\{b\}) = \{b\}$ is not closed in (X,τ) .

Proposition 4.8Every totally $\psi\alpha$ -continuous function is aalmost contra $\psi\alpha$ -continuous function but not conversely. **Proof:** Let V be any regular open set in (Y,σ).By result 2.2, V is open in (Y,σ). Since f is totally $\psi\alpha$ - continuous, f⁻¹(V) is $\psi\alpha$ - clopen in (X,τ) which implies that f⁻¹(V) is $\psi\alpha$ - closed in (X,τ). Hence f is almost contra $\psi\alpha$ -continuous.

Example 4.9 Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},\{b\},\{a,c\},X\}$ and $\sigma = \{\phi,\{a\},\{b\},\{a,b\},Y\}$. Let f: (X, τ) \rightarrow (Y, σ) be a function defined by f(a)=c, f(b)=b, f(c)=a. Then f is almost contra $\psi\alpha$ -continuous but not totally $\psi\alpha$ -continuous, since for the open set $\{a\}$ in(Y, σ), f⁻¹($\{a\}$) = $\{c\}$ is not $\psi\alpha$ -clopen in (X, τ).

Proposition 4.10Every $\psi\alpha$ -totally continuous function is a almost contra $\psi\alpha$ -continuous functionbut not conversely

.Proof: Let V be any regular open set in (Y,σ) .By result 2.2, V is open in (Y,σ) which implies that V is $\psi\alpha$ -open in (Y,σ) . Since f is $\psi\alpha$ -totally continuous, f⁻¹(V) is clopen in (X,τ) .By result 2.2, f⁻¹(V) is $\psi\alpha$ - clopen in (X,τ) which implies that f⁻¹(V) is $\psi\alpha$ -closed in (X,τ) . Hence f is almost contra $\psi\alpha$ -continuous.

Example 4.11 Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},\{a,b\},X\}$ and $\sigma = \{\phi,\{a\},\{b\},\{a,b\},Y\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function defined by f(a)=c, f(b)=b, f(c)=a. Then f is almost contra $\psi\alpha$ - continuous but not $\psi\alpha$ - totally continuous, since for the $\psi\alpha$ -open set $\{a,c\}$ in (Y,σ) , $f^{-1}(\{a,c\}) = \{a,c\}$ is not clopen in (X,τ) .

Proposition 4.12Every totally continuous function is a almost contra $\psi\alpha$ -continuous function but not conversely.

Proof: Let V be any regular open set in (Y,σ) .By result 2.2, V is open in (Y,σ) . Since f is totally continuous, f⁻¹(V) is clopen in (X,τ) .By result 2.2,f⁻¹(V) is $\psi\alpha$ - clopen in (X,τ) which implies that f⁻¹(V) is $\psi\alpha$ -closed in (X,τ) . Hence f is almost contra $\psi\alpha$ -continuous.

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[197]

 ISSN: 2277-9655

 [Karthika * et al., 8(3): March, 2019]

 ICTM Value: 3.00

 ICTM Value: 3.00

Example 4.13 Let $X = Y = \{a,b,c\}, \tau = \{\phi,\{a\},\{b\},\{a,b\},X\}$ and $\sigma = \{\phi,\{a\},\{b,c\},Y\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be the identity function. Then f is almost contra $\psi\alpha$ - continuous but not totally continuous, since for the open set $\{a\}$ in (Y,σ) , $f^{-1}(\{a\}) = \{a\}$ is not clopen in (X,τ) .

Proposition 4.14 If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a almost contra $\psi\alpha$ -continuous function and $g:(Y,\sigma) \rightarrow (Z, \eta)$ is a completely continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a almost contra $\psi\alpha$ -continuous function.

Proof: Let V be any regular open set in (Z, η) . By result 2.2, V is open in (Z, η) . Since g is completely continuous function, $g^{-1}(V)$ is regular open in (Y,σ) . Since f is almost contra $\psi\alpha$ - continuous, (g o f)⁻¹(V) = f⁻¹(g⁻¹(V)) is $\psi\alpha$ -closed in (X,τ) . Hence g o f is a almost contra $\psi\alpha$ - continuous function.

Proposition 4.15 If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a contra $\psi\alpha$ -continuous function and $g:(Y,\sigma) \rightarrow (Z,\eta)$ is aalmost continuous function, then g o $f:(X,\tau) \rightarrow (Z,\eta)$ is a almost contra $\psi\alpha$ -continuous function.

Proof: Let V be any regular open set in (Z, η) . Since g is almost continuous, $g^{-1}(V)$ is open in (Y,σ) . Since f is contra $\psi\alpha$ continuous, (g o f)⁻¹(V) = f⁻¹(g⁻¹(V)) is $\psi\alpha$ -closed in (X,τ) . Hence g o f is a almost contra $\psi\alpha$ -continuous function.

Proposition 4.16 If $f:(X,\tau)\to(Y,\sigma)$ is a almost contra $\psi\alpha$ -continuous function and $g:(Y,\sigma)\to(Z, \eta)$ is a completely continuous function, then g o $f:(X,\tau)\to(Z,\eta)$ is a contra $\psi\alpha$ -continuous function.

Proof: Let V be any open set in (Z, η) . Since g is completely continuous, $g^{-1}(V)$ is regular open in (Y, σ) . Since f is almost contra $\psi\alpha$ -continuous, (g o f)⁻¹(V) = f⁻¹(g⁻¹(V)) is $\psi\alpha$ -closed in (X, τ) . Hence g o f is a contra $\psi\alpha$ -continuous function.

REFERENCES

- [1] Arya, S.P. and Gupta, R., "On Strongly continuous mappings", Kyungpook Math. J., Vol.14, 131-143, 1974.
- [2] Bhattacharyya, P. and Lahiri, B.K., "Semi-generalized closed sets in topology", Indian J. Math., Vol.29, 376 382, 1987.
- [3] Dontchev, J., "Contra continuous functions and strongly s-closed spaces", Internat. J. Math. & Math. Sci., Vol.19, 303-310, 1996.
- [4] Ekici, E., "Almost contra pre-continuous functions", Bull. Malaysian Math.Sci. Soc., Vol.27, 53-65, 2004.
- [5] Jafari, S. and Noiri, T., "Contra α-continuous functions between topological spaces", Iranian International Journal of Sciences, Vol.2(2), 153-167, 2001.
- [6] Jain, R.C., "Role of regular open sets in general topology", Ph.D. thesis, Meerut University, Meerut, India, 1980.
- [7] Karthika, A.P and Balamani, N., "ψα-Totally continuous functions in topological spaces", International journal of Innovative Research in Science Engineering and Technology, Vol.8, 878-883, 2019.
- [8] Levine, N., "Semi open sets and semi continuity in topological spaces", Amer. Math. Monthly, Vol.70, 36-41, 1963.
- [9] Levine, N., "Generalized closed sets in topology", Rend. Circ. Math. Palermo, Vol.19, 89-96, 1970.
- [10] Njastad, O., "On some classes of nearly open sets", Pacific J. Math., Vol.15, 961-970, 1965.
- [11] Shakila, N. and Balamani, N., "ψα-closed sets in topological spaces", M.sc Thesis, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, India, 2017.
- [12] Singal, M.K. and Singal, A.R., "Almost continuous mappings", Yokohama Math J., Vol.16, 63-73, 1968.
- [13] Stone, M., "Application of the theory of Boolean rings to general topology", Trans. Amer. Math. Soc., Vol.41,374-481, 1937.
- [14] Veera Kumar, M.K.R.S., "Between semi-closed sets and semi-pre closed sets", Rend. Istit. Mat. Univ. Trieste, (ITALY), Vol.XXXXII, 25-41, 2000.

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[198]

